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Analysis of Microstrip Circuits Coupled to
Dielectric Resonators
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A Mruct —A lumped element circuit model is introduced to represent I. INTRODUCTION
coupling between a cylindrical dielectric resonator and a microstrip line.

The extemat Q of the structure is computed and compared to experimental T HE RECENT AVAILABILITY of low-loss, temper-

data obtained with three different resonators. ature-stable dielectric materials has encouraged the

development of several microwave devices employing high

Manuscript received April 13, 1981; revised August 6, 1981. This paper
dielectric constant resonators. Among the explored ‘appli-

is based upon work performed at COMSAT Laboratories under the cations are temperature-compensated oscillators [ 1]–[3],

sponsorship of the Intemationaf Telecommunications Satellite Orgarriza- low-noise microwave synthesizers [4], and narrow-bandpass
tion (INTELSAT).

The authors are with the Communications Satellite Corporation, COM-
filters [5]. These new devices utilize cylindrical dielectric

SAT Laboratories, Clarksburg, MD 20734. resonators coupled to a transmission line which is generally
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Fig. 2. Cross section and top view of geometry rmder analysis.

in microstrip configuration. Examples of circuit configura-

tion in different applications are given in Fig. 1.

This paper presents an approximate lumped-element cir-

cuit model to describe the coupling between a microstrip

line and a dielectric resonator, based on previously derived

field theory [6]. The external Q of the cavity composed by

the line and resonator is computed and the result is com-

pared to three independent sets of measured data, showing

good agreement between theory and experiment.

II. GEOMETRY UNDER ANALYSIS AND BASIC

ASSUMPTIONS

A cross section and top view of the geometry under

analysis are shown in Fig. 2, and three examples of practi-

cal configurations are provided in Fig. 3. The basic as-

sumptions are as follows.

a) Only the dominant mode (TE ,08) is present in the

structure.

b) The microstrip line is considered as a small perturba-

tion in the field distribution inside the cavity, and its

effects are neglected.

(b)

Fig. 3. Practical coupled resonator configurations.

c) The length of the circular section of the microstrip is

smaller than a quarter-wavelength in the substrate.

d) The dielectric constants involved are such that (3 > ~i

(i=l,2,4,5) and Cl>>cz.

e) All losses involved are small enough to be neglected.

For all practical purposes, these assumptions do not

create major constraints in the degrees of freedom the

structure offers.

111. CIRCUIT ANALYSIS

One possible lumped-element circuit configuration that

represents a resonator magnetically coupled to a transmis-

sion line is shown in Fig. 4, where the series resonant

circuit represents the dielectric resonator and the pi-circuit

a short microstrip line. The coupling of energy occurs only

through the mutual inductance “m” between the circuits

(radiation effects are neglected based on assumption d).

The circuit elements (LP, CP) are the total inductance and

capacitance of the microstrip line section as perturbed by

the presence of the high constant dielectric material; L,

and C, are such that the resonant frequency of the overall



BONNETTI AND ATIA: ANALYSIS OF MICROSTRIP CIRCUITS

.

C-L

‘pT
/+ h

1335

Fig. 4. Lumped equivalent circuit.

structure (c+) is given by u. = ( L,C,) – ‘~2.

The input impedance of the circuit in Fig. 3 is readily

computed as

Zi. = j
l+(”LJ’-+J22Y

40+LrA Ocp (+L,A

-4 ~2m2 + 2 ~* ‘Pcp

where

A= (@-@r)
(+

The external Q, as defined by

can be computed from (1), yielding

4Z*
Q,= *+?

Oc o

with

Zp=+rcp)-’

Zc=g.
r

(1)

(2)

(3)

(4)

(5)

(6)

The parameter ZC is hereafter referred to as “coupling

impedance.” Note that Q, has a lower bound Zp /Zo, and

therefore will not drop indefinitely with increasing values

of Zc,

IV. FIELD ANALYSIS

The coupling impedance is computed based on the infor-

mation given about field components in [6]. The self-

inductance of the dielectric resonator, as a function of the

loop current of the equivalent circuit and of the stored

magnetic energy (peak value), is defined by

(7)

Under resonant conditions, the stored magnetic energy

A \
d~,

Fig. 5. Magnetic flux linkage.

can be computed from the stored electric energy as

Wm=w=;
e JJJ

cE2do. (8)
v

The voltage drop induced in the microstrip due to current

1, in the resonant loop is

AV = jumI, (9)

and can also be computed from the magnetic flux in loop

ABCD (Fig. 5) as

AV= jupo~~H. dS. (10)

Combining (7)-(10) and substituting into (6) yield

~ =@o~i(~~Hds)2

c (11)

4 J.i.l
cE2dV

o

The surface integral in this equation can be readily

evaluated with the field expression of [6] as

J/
H.dS=#-J:(klRo) sinh((lhl). (12)

s 1

The stored electric energy [denominator of (11)] can be

computed approximately, neglecting the contribution of

the fields outside a cylinder of radius R,. Substituting the

field expressions of [6], together with the boundary condi-

tions that yield the relationship between the field ampli-

tudes in the different layers, leads to

[

W,= ?rR7h3u2P~@ h, c_-:~, +!212h ~ s2+s3+ ~&4
4k: 33 33 33 1

(13)

where

U= J:(k,R1)– Jo(klR1).J2(k1R1)

sinh2{1 h,

“= {,h,
–1

[

sinh 2{2 h *

(

sinh 212 h ~

)

~(1–cosh21zhz)
l~hz ‘1+P2 1+ {2h2 , + ~2h2

S*=
1

(sinh{1hl)2
(pcosh{2h2 –sinhJ2h2)2
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V. NUMERICAL AND EXPERIMENTAL RESULTS

Fig. 6 shows the dependence of the normalized external

Q on the position of the microstrip coupling loop; the

maximum coupling position predicted at R o/R ~=0.65 is

confirmed by two independent experiments. The test jigs

were etched with 50-0 microstrip lines over a 0.050-in-thick

alumina substrate; all lines were of equal length but vary-

ing radii. Fig. 7 shows the dependence of the external Q, as

computed from (4), on the line length using as a parameter

the ratio between the perturbed and unperturbed value of

the total line capacitance. The slope of the experimental

data is in good agreement with the theory for small line

lengths, as expected from the simple lumped-element model

used in the microstrip representation. The perturbation

introduced by the presence of the dielectric resonator over

the microstrip is not negligible; in this case, the 50-0 line

was reduced to about 43 a. Fig. 8 exhibits the same type of

data, measured with a different resonator, and also leads to

similar conclusions. Fig. 9 illustrates the correlation be-

tween the external and the unloaded Q‘s as a function of

the height of the resonator from the microstrip substrate;

measured resonant frequencies ranged from 3.57 to 3.67

GHz.

VI. CONCLUSIONS

A simple lumped-element circuit model is proposed that

represents a dielectric resonator coupled to a rnicrostrip

line. The external Q of the circuit is computed from

previously derived field theory [6], and shows good agree-

ment with experimental data. Experimental measurements

of unloaded Q‘s are also presented and shown to be

substantially degraded by the proximity of the microstrip

substrate.
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