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Analys1s of Microstrip Circuits Coupled to
Dielectric Resonators

. RENE R. BONETTI AND ALI E. ATIA, SENIOR MEMBER, IEEE

Abstract —A lumped element circuit model is introduced to represent
coupling between a cylindrical dielectric resonator and a microstrip line.
The external Q of the structure is computed and compared to experimental
data obtained with three different resonators.
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I. INTRODUCTION

HE RECENT AVAILABILITY of low-loss, temper-

ature-stable dielectric materials has encouraged the
development of several microwave devices employing high
dielectric constant resonators. Among the explored appli-
cations are temperature-compensated oscillators [1]-{3],
low-noise microwave synthesizers [4], and narrow-bandpass
filters [5]. These new devices utilize cylindrical dielectric
resonators coupled to a transmission line which is generally
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Fig. 1. Examples of oscillators and a filter employing dielectric resona-
tors.
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Fig. 2. Cross section and top view of geometry under analysis.

in microstrip configuration. Examples of circuit configura-
tion in different applications are given in Fig. 1.

This paper presents an approximate lumped-element cir-
cuit model to describe the coupling between a microstrip
line and a dielectric resonator, based on previously derived
field theory [6]. The external Q of the cavity composed by
the line and resonator is computed and the result is com-
pared to threeindependent sets of measured data, showing
good agreement between theory and experiment.

II. GEOMETRY UNDER ANALYSIS AND BAsIC
ASSUMPTIONS

A cross section and top view of the geometry under
analysis are shown in Fig. 2, and three examples of practi-
cal configurations are provided in Fig. 3. The basic as-
sumptions are as follows.

a) Only the dominant mode (TE,,;) is present in the
structure. )

b) The microstrip line is considered as a small perturba-
tion in the field distribution inside the cavity, and its
effects are neglected.
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" Fig. 3. Practical coupled resonator configurations.

c¢) The length of the circular section of the microstrip is
smaller than a quarter-wavelength in the substrate.

d) The dielectric constants involved are such that €; >¢;
(i=1,2,4,5) and €, > ¢,.

¢) All losses involved are small enough to be neglected.

For all practical purposes, these assumptions do not
create major constraints in the degrees of freedom the
structure offers.

III. CIrRCUIT ANALYSIS

One possible lumped-element circuit configuration that
represents a resonator magnetically coupled to a transmis-
sion line is shown in Fig. 4, where the series resonant
circuit represents the dielectric resonator and the pi-circuit
a short microstrip line. The coupling of energy occurs only
through the mutual inductance “m” between the circuits
(radiation effects are neglected based on assumption d).
The circuit elements (L,, C,) are the total inductance and
capacitance of the microstrip line section as perturbed by
the presence of the high constant dielectric material; L,
and C, are such that the resonant frequency of the overall
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Fig. 4. Lumped equivalent circuit.

structure (w,) is given by w, =(L,C,)" /2
The input impedance of the circuit in Fig. 3 is readily
computed as

2 V20, LA
1+| wL ——
7 WG, | oim?
in: -] . - (1)
40, LA ©C o LA
- w2m? + 2 m? LG,
where

(¢ —w,)

A= 0 (2)

The external Q, as defined by
wr a‘Xm
Q.= 2Z, 0w

®3)

w wr

can be computed from (1), yielding

0= 2 + 2 4)
¢ ZOZL‘ ZO
with
-1
Z,=(G,) (5)
2
w,m
Z="7- (6)

r

The parameter Z, is hereafter referred to as “coupling
impedance.” Note that Q, has a lower bound Z, /Z,, and
therefore will not drop indefinitely with increasing values
of Z,.

Iv. FIELD- ANALYSIS

The coupling impedance is computed based on the infor-

1335
Fig. 5. Magnetic flux linkage.
can be computed from the stored electric energy as
Wo=W,=} [ [ [eE?do. (8)
v

The voltage drop induced in the microstrip due to current

I, in the resonant loop is
AV = joml, 9)

and can also be computed from the magnetic flux in loop
ABCD (Fig. 5) as

AV = jw H-dS. 10
Jotg fS / (10)
Combining (7)—(10) and substituting into (6) yield
2
wou%(ffH-dS)
_ s
Z, . (11)

B %/[vfeEde

The surface integral in this equation can be readily
evaluated with the field expression of [6] as
1 .
fsfH-dS:k—lJ(;(klRO)smh(flhl). (12)
The stored electric energy [denominator of (11)] can be
computed approximately, neglecting the contribution of
the fields outside a cylinder of radius R;. Substituting the
field expressions of [6], together with the boundary condi-
tions that yield the relationship between the field ampli-
tudes in the different layers, leads to

mation given about field components in [6]. The self- _ wRIhpgeU [ by € hy € hy €y
. . . . e | T 8§+ = =S+ S8,
inductance of the dielectric resonator, as a function of the 4k? hy ey hy e, hy e
loop current of the equivalent circuit and of the stored (13)
magnetic energy (peak value), is defined by
where
L= W (7) 2
I ’ U=J¢(kR))— Jo(k\R)) (ki R;)
Under resonant conditions, the stored magnetic energy S, = _s%}%% -1
1
inh2{, A inh2§, A :
El_g_hiZ_%_l_;.p?-(l—i-Sln{ h§2 2)+ ph (1—cosh2{,h,)
- 212 2y 211y (sinh{xh‘)z

(pcoshéyh, —sinh&,h,)°
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Fig. 6. Normalized external Q as a function of microstrip position.
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Fig. 7. External Q as a function of microstrip coupling angle.
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Fig. 8. External Q as a function of microstﬁ'p coupling angle (second
experiment).
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Fig. 9. External and unloaded Q as a function of the distance between
the resonator and the microstrip substrate.
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V. NUMERICAL AND EXPERIMENTAL RESULTS

Fig. 6 shows the dependence of the normalized external
Q on the position of the microstrip coupling loop; the
maximum coupling position predicted at R, /R, =0.65 is
confirmed by two independent experiments. The test jigs
were etched with 50-§ microstrip lines over a 0.050-in-thick
alumina substrate; all lines were of equal length but vary-
ing radii. Fig. 7 shows the dependence of the external Q, as
computed from (4), on the line length using as a parameter
the ratio between the perturbed and unperturbed value of
the total line capacitance. The slope of the experimental
data is in good agreement with the theory for small line
lengths, as expected from the simple lumped-element model
used in the microstrip representation. The perturbation
introduced by the presence of the dielectric resonator over
the microstrip is not negligible; in this case, the 50-Q line
was reduced to about 43 Q. Fig. 8 exhibits the same type of
data, measured with a different resonator, and also leads to
similar conclusions. Fig. 9 illustrates the correlation be-
tween the external and the unloaded Q’s as a function of
the height of the resonator from the microstrip substrate;
measured resonant frequencies ranged from 3.57 to 3.67
GHz.

VI. CONCLUSIONS

A simple lumped-element circuit model is proposed that
represents a dielectric resonator coupled to a microstrip
line. The external Q of the circuit is computed from
previously derived field theory [6], and shows good agree-
ment with experimental data. Experimental measurements
of unloaded Q’s are also presented and shown to be
substantially degraded by the proximity of the microstrip
substrate.
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